Logo AIIS resized

Laboratorio Nazionale di Artificial Intelligence and Intelligent Systems

Lab CINI-AIIS @ Maker Faire 2024

Il  Lab CINI-AIIS sarà nuovamente presente alla “Maker Faire ...

Ital-IA 2024 29-30 maggio, Napoli

Dopo il successo ottenuto nelle edizioni passate, il Lab CIN ...

Osservatorio sulla ricerca in IA 2023

L’obiettivo di questo documento è di fornire un quadro molto ...

Il Lab AIIS-CINI per un'Intelligenza Artificiale responsabile

Gli strumenti di Intelligenza Artificiale (IA) come ChatGPT ...

The Department of Engineering, Università degli Studi di Perugia organizes the seminar entitled Training Fully Connected Neural Networks is ∃R-Complete. The seminar is taught by Paul Jungeblut of Karlsruhe Institute of Technology (KIT).

Abstract: we consider the algorithmic complexity of training fully connected neural networks. In particular, we see that this problem is ER-complete. This means that it is (up to polynomial transformations) equally difficult as finding the solutions of a system of polynomial equations and inequalities in several unknowns.
In the talk I will introduce the neural network training problem and give some background on ER-completeness. Then we combine both to get an idea how ER-completeness is proven.
The talk is based on our recent paper available at https://arxiv.org/abs/2204.01368.

The seminar is taught within the PhD course in Industrial and information engineering.

News by prof. Fabrizio Montecchiani, Department of Engineering, Università degli Studi di Perugia.

Share This

S5 Box

Cini Single Sign ON

Questo sito memorizza solo cookie tecnico/funzionali. Se vuoi saperne di più vai alla sezione Cookie Policy